
WM2017 Conference, March 5 – 9, 2017, Phoenix, Arizona, USA 
 

1 

 

Effective Elastic Coefficients for Reinfoced Composite Material – 17029 

Cheo Kyung Lee*, Sothee Lun*, Sung Paal Yim ** 
 

* Handong Global University 
3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 

Republic of Korea 

** Korea Atomic Energy Research Institute 
P.O. Box 150, Yusong, Daejon, 305-600 

Republic of Korea 

 

 
ABSTRACT 
 
The effective elastic coefficients for heterogeneous media periodic on the microscale 
are calculated by solving the micro-cell elastostatic problem numerically. The cell 
problem is obtained by applying the homogenization theory to periodic composite 
media. The geometry has a small inclusion of circular cross-section with longitudinal 
and transverse ribs which is embedded in the background material. The deformation 
is caused by traction force distributed on the interface between the two regions of 
different elastic moduli. The displacements are calculated by using ABAQUS and are 
used to determine the effective elastic coefficients on the macroscale. The effects of 
the existence of reinforcement are with ribs are discussed. 
 
INTRODUCTION 
 
The structural strength is enhanced when small inclusions of higher strength are 
inserted. For example, concrete structures are enhanced by steel reinforcement bars 
placed in the region where tensile force is applied. For safe and reliable operation of 
underground nuclear waste repository it is essentially important to secure large 
enough elastic properties to ensure reliable functioning of the facility. Therefore it is 
essential to know the elastic characteristics of composite media based on theoretically 
sound approach.  
 
A micro-cell geometry with inclusions of the shape of circular cross-section with 
longitudinal ribs at the top and bottom of the cross-section and transverse ribs that 
connect the longitudinal ones is considered. The inclusions are distributed periodically 
in space in the solid background medium. 

The theoretical approach is based on the homogenization theory which systematically 
combines the processes on the microscale (of order l) and deduces the governing 
equations and the effective coefficients on the macroscale (of order L) [1]. It is 
assumed that the two spatial scales are disparate so that l << L. Under two basic 
assumptions, (i) the periodicity of the medium structure on the microscale with 
periodic length l and (ii) the periodicity of all variables and material properties with the 
same periodic length l. The periodicity assumption is not restrictive because the 
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distributions and arrangements over the periodic length are quite arbitrary and pretty 
much all conceivable distribution patterns are possible. Only the efforts to carry out 
the elastostatic analysis will be different depending on the complexity of the 
distribution inside the unit micro-cell.  

The theoretical developments start from the basic governing laws on the microscale 
(the equilibrium equations and constitutive laws). With multiple-scale perturbation 
expansion the governing laws on the macroscale are deduced with no recourse to 
empirical or experimental assumptions. Throughout the process certain microscale 
boundary-value problems in a unit cell are defined whose solution is used in the 
calculation of the effective macroscale elastic coefficients. If the inclusion geometry is 
specified, the solution to the unit cell problem is usually found by numerical method. 
The software package ABAQUS is specifically used to solve the elastostatic 
boundary-value problems defined on the microscale.  

It is shown that the effective macroscale elastic coefficients increase along the 
direction of apparently larger reinforcement size. It is also shown that the penetration 
length affects the elastic coefficients so that along the direction of full penetration of 
the reinforcement bar it becomes the maximum. 

It is noted that the computational approach adopted in this study starts from the basic 
governing relations on the microscale without making empirical or phenomenological 
assumptions. Then the multiple-scale analysis is used to deduce the effective relations 
(governing equations and constitutive laws) on the microscale. Therefore, in principle, 
if the microscale geometrical characteristics and the material properties are known, 
the effective coefficients on the macroscale can be calculated. 

 
THE GOVERNING RELATIONS ON THE MICROSCALE 

The composite medium is assumed to be composed of a solid region(Ω1) and another 
solid region(Ω2) that fills the unit cell on the microscale. Each region is assumed to be 
connected throughout the composite medium. Solid deformation takes palce by 
macroscopically imposed strain over the medium. 

The basic governing equations in the solid domains (Ω1 and Ω2) and the boundary 
conditions on the interface(Γ ) are described which is given in the process of 
multiple-scale expansion.  

In each region, the quasi-static equilibrium equation with Hooke’s law must be 
satisfied. 

On the boundary Γ  between the two regions, the continuity of the displacement, and 
the continuity of stress must be satisfied.  

In summary, the equilibrium equation and the Hooke’s law are written as 

  (Eq. 1) 

   (Eq. 2) 
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where  and  are the solid stress and strain in  and  is the elastic 
coefficient tensor of rank 4. Summation is assumed for repeated indices (summation 
convention). 

The boundary conditions on Γ are 

         (Eq. 3) 

        (Eq. 4) 

where  is the unit normal vector on Γ  pointing from Ω1 to Ω2.  

The governing equations and the boundary conditions are then normalized and the 
multiple-scale expansion is carried out.  

 

MULTIPLE SCALE ANALYSIS 

Recognizing the scale disparity in the process of elastic deformation, two 
distinct length scales are introduced: the microscale (the fast scale), which is 
equivalent to the representative elementary volume in the traditional sense, and the 
macroscale, the scale over which the processes of interest take place from the 
viewpoint of reservoir engineering and management. 

The variables are expanded as perturbation series in the following small 
parameter  

        (Eq. 5) 

in which  is the microscale length and is the macroscale length. Upon expansion 
of the governing equations and boundary conditions, the microscale boundary-value 
problems are investigated according to the respective order of  and the effective 
macroscale governing equations and coefficients are derived.  

In the process of the multiple scale analysis, two canonical micro-cell 
boundary-value problems are defined whose solutions are used in the calculation of 
the effective medium properties(effective macroscale coefficients) by averaging over 
the micro-cell volume[2]. 

 

THE MICRO-CELL BOUNDARY-VALUE PROBLEMS 

If the solid displaement is expanded in a perturbation series, 

  (Eq. 6) 

The leading order term  is independent of the microscale and the correction 

terms are expressed as  
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(Eq. 7) 

where  is the unit-cell average of the left-hand side. The unit-cell average is 
defined as 

         (Eq. 8) 

The unknown functions   are the displacement in i-th 

direction due to macroscale unit strain  in . They are the solutions of the 
following boundary-value problems: 

     (Eq. 9a) 

     (Eq. 9b) 

         (Eq. 9c) 

    (Eq. 9d) 

        (Eq. 9e) 

Equations (Eq. 9a and 9b) are the equilibrium equations in  and . Equations (Eq. 
9c and 9d) are the continuity relations for the displacement and the traction on the 
interface. Equations (Eq. 9e) is imposed for the uniqueness of the solutions. 
 

The effective elastic coefficients on the macrosclae are given as 

   (Eq. 10) 

It is composed of two part : the volume weighted average of the elastic coefficients 

and the stress due to .  
 
THE MICROCELL GEOMETRY, COMPUTATIONAL DOMAIN, AND MESH 

The microcell geometry with sample meshes considered in this study is shown 
in Fig. 1 in which a half of the cross-section(  and ) is shown in (a). 

The region  in the shape of circular cross-section with a small rectangular 
longitudinal rib at the top and a transverse rib connected to the longitudinal rib is 
shown in (b). The region  is shown in (c). The front view of (b) and (c) combined is 
the same as that in (a). 

The cell shown in Fig. 1(a) has dimensionless size of unity in the horizontal 
direction and 0.5 in the vertical direction. The radius of the circular cross-section is 
chosen to be 0.1. 
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(a)   and  
 

(b)  (c)  
Fig.1 The microcell geometry: (a) Front view of a half of the cross-section, (b)  in 
the shape of circular cross-section with longitudinal and transverse ribs, and (c) . 

 
Four progressively finer meshes are used and, for convenience, the three 

meshes for   are shown in Fig. 2 (a)-(c). 

 

(a) (b) (c) 
 
Fig. 2. Three different meshes: (a) Coarse, (b) Medium, and (c) Fine. 
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PROPERTIES OF THE SOLID MATERIALS IN  AND . 

The solid materials in  and  are assumed to be isotropic. The elastic 
coefficient tensor is then[3] 

          (Eq. 11) 

where  and  are the Lame constants in  and  is Kronecker delta.  

They are normalized by  as follows: 

    (Eq. 12) 

in which symbols with superscript * are dimensionless.  

The physical values are chosen as follows: 
 =2.00x1011 Pa, =0.3; =2.49x1010 Pa, =0.21 (Eq. 13) 

 
They are typical of steel and concrete. Hence the micro-cell can be regarded as 
realization of concrete material enhanced by steel bars with ribs. The normalized 
elastic coefficients then become 
 

=1.3461, =0.5769, =0.7692 

=0.14, =0.0372, =0.1028   (Eq. 14) 

 
 
NUMERICAL RESULTS AND DISCUSSION 

 In this study, the cases of ab=xx, yy in (Eq. 10) are discussed, i.e., the 
macroscale strains are axial one in the x-, y- and z-directions. Some typical numerical 
results obtained from the finest mesh are shown for the case ab=xx.. 
Macroscale strain in x-dir.: ab=xx 

The displacements ,  and are shown in Fig. 3 (a) , (b) and (c). The 
displacements are due to the traction force on the interface which points inwards from 
the outer region ( ) to the inner region ( ). Because of perodicity it zero on the left 
and right boundaries. Hence it is positive in the left half of the cell and negative in the 
right half of the cell respectively. 
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 (a) 

(b) 

 (c) 

Fig. 3 The displacements ,  and . 

The normal strains ,  and  are shown in Fig. 4 (a), (b), 
and (c). Because of the geometric symmetry about the center of the region the 
strains are symmetric about the center. 
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 (a) 

 (b) 

 (c) 

Fig. 4 The strains (a) , (b)  and (c) . 
 

The stresses ,  and  are shown in Fig. 5(a) , (b) and (c). 
Due to the symmetry of the strains the stresses are symmetric about the center too. 
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 (a) 
 

 (b) 
 

 (c) 

Fig. 5 stresses (a) , (b)  and (c) . 
 
THE EFFECTIVE ELASTIC COEFFICIENTS ON THE MACROSCALE 

 The volumes and their respective fractions are shown in Table 1.  
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Total vol. ( + )=6.00E‐
02 

 
 = 2.06E‐03 

 
 = 5.79E‐02 

Total fractional vol. = 1  = 3.43873E‐02  = 9.65613E‐01 

 
Table 1 The volumes and their fractions. 
 
From the calculations with the finest meshes in the previous section and (Eq. 10) and 
(Eq. 11), the effective elastic coefficients on the macroscale are summarized in Tables 
2 to 4.  
 
C’ijxx (ab=xx) 
Mesh ij=xx ij=yy ij=zz 
Coarse 1.470748E‐01 4.108857E‐02 4.128230E‐02 
Medium 1.468771E‐01 4.100090E‐02 4.118391E‐02 
Fine 1.468470E‐01 4.098962E‐02 4.117049E‐02 
Finer 1.468152E‐01 4.097840E‐02 4.117295E‐02 
 
Table 2 The effective elastic coefficients on the macroscale (ab=xx). 
 
C’ijyy (ab=yy) 
Mesh ij=xx ij=yy ij=zz 
Coarse 3.963281E‐02 1.510368E‐01 4.203580E‐02 
Medium 3.953851E‐02 1.508417E‐01 4.193985E‐02 
Fine 3.952608E‐02 1.508121E‐01 4.192755E‐02 
Finer 3.951348E‐02 1.507857E‐01 4.193037E‐02 
 
Table 3 The effective elastic coefficients on the macroscale (ab=yy). 
 
C’ijzz (ab=zz) 
Mesh ij=xx ij=yy ij=zz 
Coarse 4.013919E‐02 4.181405E‐02 1.727569E‐01 
Medium 4.004893E‐02 4.172665E‐02 1.726968E‐01 
Fine 4.003574E‐02 4.171399E‐02 1.726888E‐01 
Finer 4.003036E‐02 4.170903E‐02 1.726882E‐01 
 
Table 4 The effective elastic coefficients on the macroscale (ab=zz). 
 
It is seen the effective elastic coefficients converge quickly as the mesh become finer 
and finer and are satisfactorily accurate for the ‘Finer’ case. 
 
The effective elastic coefficient C’yyyy (=1.507857E‐01) is a little bit larger than 
C’xxxx (=1.468152E‐01) because the extent of the reinforcement bar size is larger 
along y-direction due to the longitudinal ribs. 
 
The effective elastic coefficient C’zzzz (=1.726882E‐01) is somewhat larger than 
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C’yyyy (=1.507857E‐01) since the reinforcement bar is fully penetrating along 
z-direction and also the transverse ribs add more rigidity along z-direction. 
 
CONCLUSIONS 

From the calculations of the effective elastic coefficients for a composite material with 
embedded reinforcement bars with longitudinal and transverse ribs the following 
conclusions are drawn. 

1. The elastic coefficients obviously increase due to the existence of stronger 
reinforcement bars.  

2. The elastic coefficient appears to be larger in the direction of apparently larger 
extent of the bar due to the longitudinal ribs.  

3. The elastic coefficient is the largest along the direction of full penetration of the 
bar with enhancement due to the transverse ribs. 
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